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ABSTRACT 7 76

The reaction operator formulation for the exact solution of the
SchrBdinger equation is used with a truncated basis set to obtain
approximate solutions. The relationship between this truncated reaction
operator formalism and the Rayleigh-Ritz variational method is emphasized
and shown explicitly. The truncated reaction operator and its matrix
elements are discussed in general; computed and discussed for a simple
example, the helium atog; using a three membered basis set. It is
shown that the reaction operator can be replaced by a function which we
call the ™effective™ perturbation. This function has very fundamental
significance and may lend itself to accurate empiricism. Expressions
are given comparing the ™effective™ perturbation with the perturbation

and approximations to this function for the helium atom are computed.
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TRUNCATED REACTION OPERATCRS

1. Introduction

Watsonl, Brueckner and Levinsonz, Lﬁwdin3 and others4 have derived
the reaction operator formulation for the exact solution of the
Schr8dinger equation. This formulation can be used with a truncated
basis set to obtain approximate solutions of the SchrBdinger equation.
One of the purposes of our present discussion is to emphasize and show
explicitly, in the simplest possible manner, the relationship between
the approximate solutions obtained with a t;uncated reaction operator
formalism and the solutions obtained by the Rayleigh-Ritz variational
method. The approximate reaction operator and its matrix elements are
discussed in general and in connection with a simple example, i.e. the
helium atom, using a three membered basis set,

The reaction operator can be replaced by a function, £ 2 which

Vef
we call the "effective™ perturbation. It appears to us that this
function has very fundamental significance. Ultimately after we have
obtained a backlog of numerical and theoretical experience with the
determination of the Meffective™ potentials for atomic and molecular

problems, we may be able to accurately empiricize V thus cobtaining

eff ’
good values for the energy and other physical observables of these
systems.

First, consider that part of the reaction operator formulation
for the exact solution of the SchrBdinger equation pertinent to this
paper. We fix our attention on the effect of the perturbation V on
the gq-th unperturbed state. The q-th state is considered to be non-
degenerate and is not necessarily the ground state. The Hamiltonian

for the unperturbed system is Ho and

K. M. Watson, Phys. Rev. 89, 575 (1953).

K. A. Brueckner and C. A. Levinson, Phys. Rev. 97, 1344 (1955).

P. 0. LBwdin, J. Math. Phys. 3, 969 (1962).

A more complete list of references is given in K. Kumar, "Perturba-

tion Theory and the Nuclear Many Body Problem™ (North-Holland
Publishing Co., Amsterdam, 1962).



Hcﬁok = E£°)§0k , k=1,2,°0+ (1)

where ¢k and El((o) are the normalized eigenfunction and eigenvalue,
respectively, for the k-th unperturbed state. For the perturbed

system, the Hamiltonian H , is given by
H = Ho +V . (2)

The reaction or energy shift operator, t , is defined by

E, = Ec(lo) + <§0q]t]$0q> (3)

where Eq is the exact energy for the perturbed system. Let us define

two projection operators, O and P , such that

oX = §0q (%)

and

P = 1-0 (5)

where .jx: is a trial function. Using these definitions it can be

shown that the hermitian operator ¢t , associated with V , H0 s

and the state under consideration q , is given by3
t = V+ VTot (6)
where
-1
T P [oCo + P(E, HO)P] P . (7)
Here O( 1is an arbitrary number which insures the existence of the

inverse operator in Eq. (7).

The exact wave function for the perturbed state, wq , is given by3

ot R ®




where W 1s the wave operator associated with the g-th unperturbed

state;
W o= 1+T°t = (1/V)t . €))

Here
<¢q|"'q> =1 (10)

and hence the wave function, Wq » has not been normalized to unity.
One may define an ™effective™ perturbation, Veff(q) s which

replaces the operator t in the above formulation;

Veff(Q) = (t?’q)/% . (11)

Clearly the exact energy and wave function for the perturbed system

may be written as

=}
]

q <?q’Ho + Veff(q)[ ?q> | (12)

and

1

¢ = Ugome . (13)

In Secs, 2 and 3 Veff(q) is compared with the perturbation V . 1In
Sec. 4  approximations to Veff(q) for the helium atom are computed.

It is our hope that the function Veff(q) will lend itself to empiricism.

2. Truncated Reaction Operators and the Approximate Solution of the

SchrBdinger Equation.

In this -section we limit consideration to trial functions which
may be expanded in terms of a truncated basis set, {Qpbl, of n
eigenfunctions of an Ho . For this choice of trial }hngtion t is
equivalent to a truncated reaction operator, t(m) , which involves
only the set {<F£} . (The use of an arbitrary truncated basis set,
{kuk} » is discussed briefly in Sec. 3; but the treatment is more




complicated.) The matrix elements of t{n) are obtained by an itera-
tive procedure; after which approximations to the energy, Eq(n) 3 and
the normalized wave function, \}g(n),can be easily calculated., Finally
an expression for the approximate "effective™ perturbation, Veff(q,n) s
is cbtained.

For the class of trial functions which are linear expansions in

the truncated set .(qQ%} s the operator P dis equivalent to
n

P(n) = Zl(ﬁ& <Pl (1%)
k=
b

with O+ P(n) =1, Using Eq. {14) we may write
T, (n) = P(n)/(Eq(n) - H) (15)

where the inverse operator im Ea. (15) is well defined assuming Eq(n)

€2)

does not equal any of the eigenvalues Ek . Using Eqs. (1), (3), (6),

(14) and (15) we obtain

n
t(n) = V+ vzlgak><¢k|t<n> (16)

k=] {o)
and
- glo .
E () = E% 4+ {ple@|py . (17)

The approximate wave operator, W(n) , may be obtained from Egs.
(9) and (16);

W(n) = (1/V)t(n) (18)

Using Eqs. (8) and (18), the normalized approximate perturbed wave
function is given by
I

Y - ) G WP, (19)

k1




where

Ceg® = N (/@@ - B | (20)

N - ONER
v =) ROYALXD - 2] } : 1)
m=1

b . .
Thus both Eq(n) gnd \;@(n) are easily obtained once the tkq(n)

and

are computed.
The matrix representation of t(n) , using Eq. (16), is
n
= (o) - (o) f = ° 90
tsq(n) E: ek kq(n)/ (E + tqq(n) E ) 5 s=l, {n .

k=1 (22)

The system of equations given by Eq. (22) may be solved iteratively. A
guess is made for tqq(n) . Then the system of equations
n
tg ™ = Z i@/ ES e @ B, (23)
k=1
s=1,¢°¢,q-1,q+1,°+o,n

is solved for the tkq(n)'s with k#q.. These tkq(n)“s are then
used in the expression

n

- (o) _ (o)
tq® = ) Valig@/@L + e @ - E) (24)
k=1
to calculate a new value for tqq(n) . This procedure is repeated until

self consistency is obtained. From the final values for the tkq(n) s
the approximate perturbed energy and normalized wave function are given

by Bas. (17) and (19) respectivelys. Similar iterative methods are

> Solutions may also be obtained for the reaction operator matrix

elements trg (n) , with R #q , using Eq. (16). These matrix elements,
however, do not have any obvious application in the formulation for
non-degenerate states. Here it should be remembered that the t-opera-
tor is defined with respect to the state under consideration, q .



available for solving the secular equation of the linear variational
method, where the variational coefficients are treated in much the same
way as the tkq(n) (see Sec. 3 and for example ref. 6).

The connection between the approximate "™effective™ perturbation,
Veff(q,n), and V 1is obtained using Eqs. (11) and (16);

n

Ve = C@PYIP, = WP ) 6 PSR - ED)
k=1 (25)
This function, Veff(q,n) , is equivalent to the operator t(m) in
the computation of the energy and wave function of the perturbed system
(see Sec. 1); indeed tkq(n) = (Veff(q’n))kq . An approximate Weffective™
perturbation is computed for a specific example, the He atom, in Sec.
4, In Sec. 3 an expression for Veff(q,n) is obtained in terms of an

arbitrary basis set {?A)é} o

3. The Reaction Operator and the Variational Method

The reaction operator formulation is closely connected to the linear
variational method for solving the SchrBdinger equation. This property,
. . R . . . 3
is of course, implicit in the derivation of the reaction operator. .

From Eq. (22) one obtains

m
z [vsk - (B () - £() Sks] b B ) - ONE
k=1 o

§=1,2,°++,n
The matrix element of the perturbed Hamiltonian, Hsk , is given by
Hpe = o+ g = By Ve o 27)

Hence Eq. (26) becomes

P. 0. LBwdin, J. Molecular Spectrosc. 10, 12 (1963).




Z[nsk SE W i ] bW/ E @ - = 0, 8

g=1,2,°+°,n .

.

This set of equations has a non-trivial solution only if the deter-

minantal equation

p,l =0 (29)
where

Dy = (Hy - E (0§ )(E (n) - 57! (30)
is satisfied. The factor (Eq(n) - EIEO))-l B gommon to each member of

the k-th column, may be divided out of the determinant given by Eq.
(29). Thus we obtain

ﬁ (o), -1
[. 1(Eq(n) ) EJ' ) ] lek i} Eq(n) Sks| =0 * (D
J=.

Since the product factor is not zero, Eq. (31) reduces to the usual”

secular equation7
|Hsk-Eq(n)gks| =0 . _ - (32)

The relationship between the linear variational coefficients,
qu(n) , and the matrix elements of the reaction operator, tkq(n) R
is given by Eq. (20). This formula is wvalid only for a basis set
composed of orthonormal eigenfunctions of Ho .

Arbitrary Truncated Basis Set. Consider an orthonormal truncated

basis s {¥*)é} , with the single restriction that CA) GFQ
Using this basis set we may write

J. 0. Hirschfelder, C. F, Curtiss and R. B. Bird, "Molecular Theory
of Gases and Liquids™ (John Wiley and Sons, Inc., New York, 1954)
p. 63.



n
t(n) = V+VZIwk> wle@ (33)
k=1 (Eq(n) - Ho)

k#q
Here, however, we may not replace Ho by Eio) as was done previously
when the set {?Dk was used. On this account, there is no simple

theory such as that developed in Sec. 2. On the other hand it is easy
to obtain the relationship between the qu(n) and the matrix elements
of the reaction operator,

Let us expand the normalized wave function, \i?;(n) R in terms

of the basis set {CA)k} s

o n
\Kl(n) = NWq(n) = NZbkq(n)cuk = zckq(n)wk (34)
k=1 k=1
where N 1is a normalization constant. Using Egs. (8), (18) and (34)
we obtain
n
t(n)§0q = V\Vq(n) = VZ(qu(n)/N)(uk . (35)
k=1
Thus the general expression for the tsq(n) in terms of the qu(n)
becomes
n .
tsq(n) = EZ(qu(n)/N)Vsk s 8=1,2,°0°,n . (36)
k=1

Using Eq. (35) one may obtain ah expression for Veff(q,n) 3

I
V,pe(,m) = (V/goq)z(ckq(r»m)cuk : (37)
k=1

Equations (36) and (37) contain Eqs. (22) and (25) as special cases.

4, An Example, the Helium Atom8; Discussion.

We how consider a simple example to illustrate some of the ideas

- e e . w -

8 A more detailed version of this work is available in the technical
report, WIS-TCI-10, Theoretical Chemistry Institute, University of
Wisconsin, 25 February 1963,




developed in the preceding part of this paper. The truncated reaction
operator matrix elements are obtained for the (15)2,(1s)(28),(23)2 1S
states of helium. Simple basis sets are used, which consist of one or
more configurational interaction wave functions, constructed from
proéucts of uniformly scaled hydrogen ls and 2s orbitals. The approxi-
mate "effective™ perturbation, Veff(q,n) 5 is computed for specific
examples. Finally, the results obtained for helium and the more general
results of the previous parts of this paper are discussed.

The two electron problem is very advantageous for this investiga-
tion because of simplifications resulting from the factorization of
electron spin. This factorization of spin permits the use of the

following basis functionsg;

8!
2
s

1s(1) 1s(2)

7% [1s(1) 25(2) + 1s(2) 25(1)] (38)

2s(1) 2s(2)

where

¥ 3/

(%)

1s(i) (Z) 2exp(-Zri)

(39

25 (1) @ en® @%@ - zr)exp(-2r,/2)
i=1o0or 2, and Z is a scaling parameter which may be energy optimized.
The Hamiltonian, H , for the helium atom may be written in the

form of Eq. (2) with

B o= -@v,? -@v,” -z [am) + iy 0y

o

9 All equations and data given in this paper are in atomic units,

where the unit of length is a the Bohr radius, and the unit of
energy is e2/a° .
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and
Vs @- [alp amp) e, 1)
The eigenvalues Eéo) sk =1.,2,3, are easily computed by applying H0

to the functions given by Eqs. (38). The matrix elements of the pertur-
bation, V , can be computed using the tables of Roothan10 and Barnett
and Coulsonll.

To obtain the truncated reaction operator matrix elements for the
(ls)z,(ls)(Zs),(Zs)2 15 states of helium we set q = 1,2, and 3,
respectively, in Eqs. (22), (23) and (24). and use the iterative method
of solution outlined in Sec. 212. In the Appendix we discuss briefly
the selective nature of the iterative method of solving for the reaction
operator matrix elements., It is shown that the procedure will converge
(for the calculations considered in this paper) to the state under con~
sideration regardless of the initial choice of tqq(n)ilnTaHb I (page 1ll) the
tkq(n) are listed at several stages of approximation ~. Each agproxi-
mation is computed using one or more of the configurations (1s)~,(1ls)(2s),
(2s)2 in the basis set. For the unscaled computations with Z = 2 ,
the tkl(n) decrease by approximately an order of magnitude as k
takes on the values 1,2, and 3 respectively. Similar trends for the
tkq(n)3 with q # 1, are suggested for k > q (see Table I).

However with the limited data given here it is impossible to establish
definite trends for these matrix elements. The tkq(n) s for 2 =2,
seems to be a relatively slowly varying function of n . Similar but
less pronounced trends in the tkq(n) are seen in the energy optimized
computations.

10 ¢, ¢. J. Roothan, J. Chem. Phys. 19, 1445 (1951).

11 M. P. Barnett and C. A. Coulson, Phil. Trans. (Series A) 243, 221
(1951).

12 The iterative method was carried out numerically using a Control
Data Corporation 1604 computer., In the energy minimization part of
the program a simple search method was employed. All data has been
rounded off.

13 The values of tkl(n) , with Q2 # q , are not given in this paper
(see ref. 5), but are available in Tables IV, V, and VI of ref. 8.
The physical significance and use of these matrix elements is at the
present time unclear.
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Having computed the truncated reaction operator matrix elements
one may compute approximations to the normalized perturbed wave
functions for the 13)2,(18)(25),(28)2 18 states of helium using Eqs.
(19), (20), and (21); these are given in Table II (page 13). For both
the unscaled and energy optimized calculations the trends in the numer-
ical values of the coefficients of the normalized perturbed wave
function, qu(n) , are more clearly defined than these for the tkq(n)
(compare tables I and II). The qu(n) show a much smaller change in
magnitude upon scaling than the tkq(n) o Thus we conclude that the
qu(n) act as a ™normalized™ tkq(n) » This effect is due to the
energy difference, Eq(n) - Eéo) , appearing in the definition of the
qu(n) given by Eq. (20). This type of trend in the coefficients of
a linear variational wave function is apparent im the work of others
-- for example, the Shull and LBwdin investigation of the ground
state of hel.iumu° With numerical experience for atomic and molecular
problems one may eventually be able to empiricize the tkq(n) or,
equivalently; the qu(n) for heiium and other systems. Good estima-
tions of the energy could then be obtained from Eqs. (17) and (36).

One can easily compute approximations to the energy of the
(1s)2,(1s)(25)9(25)2 18 states of helium using Eq, {17) and the
tqq(n) obtained by the iterative procedure of Sec. 2. These energies,
given in Table III (page 14), are not particularly good because of the
nature of the truncated basis set used.

The approximate ™effective" perturbation, Veff(q,n,z) ; can be
computed using the data of Table I (or Table II) and Eq. (25) (or Eq.
(37)). As an example we give Veff(l,B,Z) and veff(1’3?20p> where

Zop is the energy cptimized Z . Defining
g(ia) = (1 = ari)exp(ari) s i=1 or 2 (42)
v - (2 -2 [+ arey)] o+ i, %3)
.

H. Shull and P. O, IBwdin, J. Chem. Phys. 30, 617 (1959).
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we obtain

Voee(1,3,2)/V(2) = {1-(0.079382) [g(l,l) +g(2,1§] -(q,oozlzz)g(l,l)g(z,l)}

» | (44)
1-(0.03090) [g(1,0.8792) + g(2,0.8792)

Verg(1,3,1.7583) /V(1.7583) -(0.00302) g(1,0.8792) g(2,0. 8792) :

The simple form of the approximations to Veff for the helium atom
givén above is due to the limited truncated basis set used. The use of
better basis sets would permit accurate calculations of Veff « After
sufficient numerical and theoretical experience we hope it will be
possible to accurately empiricize Veff for many atomic and molecular
problems.

One of the most useful aspects of the reaction operator formula-
tion is that the operator, t , takes into account all interactions of
the system above the unperturbed state. Thus t and its matrix elements
(and of course Veff and its matrix elements) must give valuable infor-

mation concerning the physical properties of the perturbed system.
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Appendix. Convergence Properties of the Iterative Method of Solving
’ for the Reaction Operator Matrix Elements.

In the computations outlined in Sec. 4., interesting convergence

properties of the iterative method for obtaining the reaction operator
matrix elements were apparent. The method converged to the tqq(n)
corresponding to the state under consideration even if the initial guess
for tqq(n) corresponded to the solution for anotheg perturbed state.
In the following discussion we make use of a theorem which states:
If the equation, x = f(x) subject to the condition £'(x) # 0 , is
solved by the iterative procedure, Xppl = f(xK) , then the method
will converge to a particular root ) , if [f'(,K)|< 1. 1If
[£'C\)|>1, the iterative procedure will diverge from the root A .

Using Eq. (22) with q=1; Z =2; s = 1,2, or 3; one can show8

that for the ground state
t..(3) =V +v2 Xin - v2 / ! 45
13 = VitV [12 23 713] (45)

-1
2 2 -1 2
+V3 [V - Vs 712] + 2V15V2375 [712 Y13 " Vz3]

where

- (o) ‘o
le = E;° - HJ.J. +t,,03) , §j=2,3 . (46)

If E{o) is added ;g both sides of Eq. (45) we obtain the Feenberg
perturbation series for a basis set comprised of three real ortho-
normal eigenfunctions of H° . Equation (45) has the form ti; = f(tll) .
Using Eq. (45) one obtains:

- 2
- [~ T
2 2 2 2 2 2
VigVas + Vi3Vo3 + V1913 REPR P
£ (e () = :
+ V2 Y2 42V, V.V (W qn + Vqa) -v2
13 Y12+ V13732210 ¥ 15 13 23
) 4L (47)
15

E. Feenberg, Phys. Rev. 74, 206 (1948).
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The roots of Eq. (45, t{i)(3) , which correspond to the j-th

perturbed state can be calculated by the following equation:
(i) - _ (0 o
t1 (3) Ej(3) El s 3=1,2,3 .

The values for lf'(tii)(3))| , J=1,2,3, are given below:

1o (D -
| £ (77 (GN)| = o.1011

ven (2
[P @)y = 9.960
oD an| = 171x 10’

(48)

(49)

Equations (49) explain the selective nature of the iterative procedure

for the ground state calculations with Z =2 , n = 3, Similar

. 8 R .
explanations can be given for the other computations of Sec. 4.




